Reconstituted synaptotagmin I mediates vesicle docking, priming, and fusion

نویسندگان

  • Zhao Wang
  • Huisheng Liu
  • Yiwen Gu
  • Edwin R. Chapman
چکیده

The synaptic vesicle protein synaptotagmin I (syt) promotes exocytosis via its ability to penetrate membranes in response to binding Ca(2+) and through direct interactions with SNARE proteins. However, studies using full-length (FL) membrane-embedded syt in reconstituted fusion assays have yielded conflicting results, including a lack of effect, or even inhibition of fusion, by Ca(2+). In this paper, we show that reconstituted FL syt promoted rapid docking of vesicles (<1 min) followed by a priming step (3-9 min) that was required for subsequent Ca(2+)-triggered fusion between v- and t-SNARE liposomes. Moreover, fusion occurred only when phosphatidylinositol 4,5-bisphosphate was included in the target membrane. This system also recapitulates some of the effects of syt mutations that alter synaptic transmission in neurons. Finally, we demonstrate that the cytoplasmic domain of syt exhibited mixed agonist/antagonist activity during regulated membrane fusion in vitro and in cells. Together, these findings reveal further convergence of reconstituted and cell-based systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complexin arrests a pool of docked vesicles for fast Ca2+-dependent release.

Regulated exocytosis requires that the assembly of the basic membrane fusion machinery is temporarily arrested. Synchronized membrane fusion is then caused by a specific trigger--a local rise of the Ca(2+) concentration. Using reconstituted giant unilamellar vesicles (GUVs), we have analysed the role of complexin and membrane-anchored synaptotagmin 1 in arresting and synchronizing fusion by lip...

متن کامل

Neurotransmitter Release: The Last Millisecond in the Life of a Synaptic Vesicle

During an action potential, Ca(2+) entering a presynaptic terminal triggers synaptic vesicle exocytosis and neurotransmitter release in less than a millisecond. How does Ca(2+) stimulate release so rapidly and precisely? Work over the last decades revealed that Ca(2+) binding to synaptotagmin triggers release by stimulating synaptotagmin binding to a core fusion machinery composed of SNARE and ...

متن کامل

C2B polylysine motif of synaptotagmin facilitates a Ca2+-independent stage of synaptic vesicle priming in vivo.

Synaptotagmin I, a synaptic vesicle protein required for efficient synaptic transmission, contains a highly conserved polylysine motif necessary for function. Using Drosophila, we examined in which step of the synaptic vesicle cycle this motif functions. Polylysine motif mutants exhibited an apparent decreased Ca2+ affinity of release, and, at low Ca2+, an increased failure rate, increased faci...

متن کامل

The Morphological and Molecular Nature of Synaptic Vesicle Priming at Presynaptic Active Zones

Synaptic vesicle docking, priming, and fusion at active zones are orchestrated by a complex molecular machinery. We employed hippocampal organotypic slice cultures from mice lacking key presynaptic proteins, cryofixation, and three-dimensional electron tomography to study the mechanism of synaptic vesicle docking in the same experimental setting, with high precision, and in a near-native state....

متن کامل

Synaptotagmin interaction with SNAP-25 governs vesicle docking, priming, and fusion triggering.

SNARE complex assembly constitutes a key step in exocytosis that is rendered Ca(2+)-dependent by interactions with synaptotagmin-1. Two putative sites for synaptotagmin binding have recently been identified in SNAP-25 using biochemical methods: one located around the center and another at the C-terminal end of the SNARE bundle. However, it is still unclear whether and how synaptotagmin-1 × SNAR...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 195  شماره 

صفحات  -

تاریخ انتشار 2011